IMN

Biblio. IMN

Référence en vue solo

Zhu, Y., Deebansok, S., Deng, J., Wang, X., Brousse, T., Favier, F. & Fontaine, O. (2024) Electron Delocalization and Electrochemical Potential Distribution Phenomena in Faradaic Electrode Materials for Understanding Electrochemical Behavior. Advanced Energy Materials, 
Added by: Richard Baschera (2024-04-26 07:49:52)   Last edited by: Richard Baschera (2024-04-26 07:51:59)
Type de référence: Article
DOI: 10.1002/aenm.202304317
Numéro d'identification (ISBN etc.): 1614-6832
Clé BibTeX: Zhu2024
Voir tous les détails bibliographiques
Catégories: INTERNATIONAL, ST2E
Créateurs: Brousse, Deebansok, Deng, Favier, Fontaine, Wang, Zhu
Collection: Advanced Energy Materials
Consultations : 33/35
Indice de consultation : 70%
Indice de popularité : 17.5%
Résumé     
Electrochemical energy storage devices are built upon the foudations of batteries and supercapacitors. In the past decade, new pseudocapacitor-like electrodes are intensively developed to obtain superior energy storage performance. Pseudocapacitive matarials store charge through Faradaic processes, while the electrochemical signal remains like electrochemical double-layer capacitors (EDLCs). To address this controversy, an analytical model is introduced for evaluating the voltammograms of electrode materials. Given this, the work focuses on understanding the origin of the pseudocapacitive phenomena in the cyclic voltammetry (CV) electrochemical signal. Based on electron transfer mechanism and tunnelling effect within the atomic structure, pseudocapacitive matarials possess a high electron delocalization possibility related to the redox centers number and initiates the electrochemical potential distribution among neighboring redox sites, which is consequently observed in the electrochemical signal as the plateau feature in CV, like EDLC. First, the determination of the capacitive tendency of various electrode materials is proposed, which turns out to be relative to the redox centers number (n) and total charge (Z). Here, when this number is large, electron hopping will very likely happen. The developed model is versatile to predict rate/potential regimes for the maximum faradaic storage, and then well differentiates the pseudocapacitive and battery materials.
  
wikindx 4.2.2 ©2014 | Références totales : 2859 | Requêtes métadonnées : 49 | Exécution de script : 0.25492 secs | Style : Harvard | Bibliographie : Bibliographie WIKINDX globale