Biblio. IMN

Référence en vue solo

Buvat, G., Quarez, E. & Joubert, O. (2016) Innovative solid oxide fuel cells based on BaIn0.3Ti0.7O2.85 electrolyte and La2Mo2O9 amorphous reduced phase as anode material. J. Power Sources, 302 107–113. 
Added by: Laurent Cournède (2016-03-10 18:36:43)
Type de référence: Article
DOI: 10.1016/j.jpowsour.2015.10.030
Numéro d'identification (ISBN etc.): 0378-7753
Clé BibTeX: Buvat2016
Voir tous les détails bibliographiques
Catégories: ST2E
Mots-clés: Ageing, Amorphous oxide, bito7, Cathode, Cell test, ceria, ion conductor, La2Mo2O9, lscf, lsm, performance, sofc, technology, thermodynamic stability
Créateurs: Buvat, Joubert, Quarez
Collection: J. Power Sources
Consultations : 6/561
Indice de consultation : 4%
Indice de popularité : 1%
This article presents elaboration of electrolyte-supported solid oxide fuel cells based on the oxide ion conductor BaIn0.3Ti0.7O2.85 (BIT07) as electrolyte, the amorphous reduced phase of La2Mo2O9 (La2Mo2O7-y) as anode which presents a mixed ionic and electronic conduction in low pO(2) and La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF) as cathode. Electrode materials have been deposited by screen-printing on BITO7 substrate. In order to avoid chemical reactivity between BITO7 and La2Mo2O9, a thin layer of Ce0.9Gd0.1O1.95 (CGO) has been used. Electrochemical performance of the single cell has been characterized by I-V measurements and impedance spectroscopy. Encouraging performance of 40 mW cm(-2) at 700 degrees C is obtained with a thick electrolyte layer. Finally, ageing test of the cell at 700 degrees C during 800 h has been done with a low rate of performance loss of 4.4 x 10(-3)\% h(-1). No degradation of the electrolyte material is reported and stability of the anode material after operating the fuel cell is discussed. (C) 2015 Elsevier B.V. All rights reserved.
Added by: Laurent Cournède  
wikindx 4.2.2 ©2014 | Références totales : 2781 | Requêtes métadonnées : 63 | Exécution de script : 0.11847 secs | Style : Harvard | Bibliographie : Bibliographie WIKINDX globale