IMN

Biblio. IMN

Référence en vue solo

Dinh Khac, H., Whang, G., Iadecola, A., Makhlouf, H., Barnabé, A., Teurtrie, A., Marinova, M., Huve, M., Roch-Jeune, I., Douard, C., Brousse, T., Dunn, B., Roussel, P. & Lethien, C. (2024) Nanofeather ruthenium nitride electrodes for electrochemical capacitors. Nat. Mater. 1–10. 
Added by: Richard Baschera (2024-04-16 08:26:21)   Last edited by: Richard Baschera (2024-04-16 08:34:21)
Type de référence: Article
DOI: 10.1038/s41563-024-01816-0
Numéro d'identification (ISBN etc.): 1476-4660
Clé BibTeX: DinhKhac2024
Voir tous les détails bibliographiques
Catégories: IMN, INTERNATIONAL, ST2E
Mots-clés: batteries
Créateurs: Barnabé, Brousse, Dinh Khac, Douard, Dunn, Huve, Iadecola, Lethien, Makhlouf, Marinova, Roch-Jeune, Roussel, Teurtrie, Whang
Collection: Nat. Mater.
Consultations : 1/4
Indice de consultation : 2%
Indice de popularité : 0.5%
Liens URLs     https://www.nature ... s41563-024-01816-0
Résumé     
Fast charging is a critical concern for the next generation of electrochemical energy storage devices, driving extensive research on new electrode materials for electrochemical capacitors and micro-supercapacitors. Here we introduce a significant advance in producing thick ruthenium nitride pseudocapacitive films fabricated using a sputter deposition method. These films deliver over 0.8 F cm–2 ({textasciitilde}500 F cm–3) with a time constant below 6 s. By utilizing an original electrochemical oxidation process, the volumetric capacitance doubles (1,200 F cm–3) without sacrificing cycling stability. This enables an extended operating potential window up to 0.85 V versus Hg/HgO, resulting in a boost to 3.2 F cm–2 (3,200 F cm–3). Operando X-ray absorption spectroscopy and transmission electron microscopy analyses reveal novel insights into the electrochemical oxidation process. The charge storage mechanism takes advantage of the high electrical conductivity and the morphology of cubic ruthenium nitride and Ru phases in the feather-like core, leading to high electrical conductivity in combination with high capacity. Accordingly, we have developed an analysis that relates capacity to time constant as a means of identifying materials capable of retaining high capacity at high charge/discharge rates.
  
Notes     
Publisher: Nature Publishing Group
  
wikindx 4.2.2 ©2014 | Références totales : 2860 | Requêtes métadonnées : 59 | Exécution de script : 0.14418 secs | Style : Harvard | Bibliographie : Bibliographie WIKINDX globale