![]() |
![]() |
Espinosa-Angeles, J. C., Quarez, E., Eye'a, L.-B. M., Douard, C., Iadecola, A., Shao, H., Taberna, P.-L., Simon, P., Crosnier, O. & Brousse, T. (2023) Charge Storage Mechanism of LixWO3 Hexagonal Tungsten Bronze in Aqueous Electrolytes. BATTERIES-BASEL, 9 136.
Added by: Richard Baschera (2023-03-24 13:52:30) Last edited by: Richard Baschera (2023-03-24 13:54:35) |
Type de référence: Article DOI: 10.3390/batteries9020136 Clé BibTeX: EspinosaAngeles2023 Voir tous les détails bibliographiques ![]() |
Catégories: IMN, PMN, ST2E Créateurs: Brousse, Crosnier, Douard, Espinosa-Angeles, Eye'a, Iadecola, Quarez, Shao, Simon, Taberna Collection: BATTERIES-BASEL |
Consultations : 9/91
Indice de consultation : 22% Indice de popularité : 5.5% |
Résumé |
The electrochemical behavior of the lithium hexagonal tungsten bronze, LixWO3, is investigated herein. The material was synthesized at a low temperature under hydrothermal conditions, yielding nanorod-like particles with growth along the c-axis. Upon cycling in a 5 M LiNO3 aqueous electrolyte, a specific capacity of 71 C.g(-1) was obtained at 2 mV.s(-1), corresponding to a charge/discharge cycle of 10 min. The charge storage mechanism was elucidated using various complementary techniques, such as electrochemical quartz crystal microbalance (EQCM) and synchrotron operando X-ray absorption spectroscopy (XAS). A desolvation process upon Li+ intercalation into the lattice of the material was evidenced, accompanied by a reversible reduction/oxidation of tungsten cations in the crystal structure upon charge/discharge cycling.
|