![]() |
![]() |
Rybkovskiy, D. V., Impellizzeri, A., Obraztsova, E. D. & Ewels, C. P. (2019) Polyiodide structures in thin single-walled carbon nanotubes: A large-scale density-functional study. Carbon, 142 123–130.
Added by: Richard Baschera (2018-12-20 09:04:18) Last edited by: Richard Baschera (2018-12-20 09:08:58) |
Type de référence: Article DOI: 10.1016/j.carbon.2018.10.049 Numéro d'identification (ISBN etc.): 0008-6223 Clé BibTeX: Rybkovskiy2019 Voir tous les détails bibliographiques ![]() |
Catégories: INTERNATIONAL, PMN Mots-clés: algorithm, Carbon nanotube, chains, Conductivity, crystal-structure prediction, Density functional theory, electronic-structure, encapsulation, growth, iodine, Iodine chains, nanocrystals, Nanotube filling, optimization, Polyiodides, spectroscopy Créateurs: Ewels, Impellizzeri, Obraztsova, Rybkovskiy Collection: Carbon |
Consultations : 4/561
Indice de consultation : 6% Indice de popularité : 1.5% |
Résumé |
Using automatic structure generation algorithms and large-scale density functional computations we study polyiodide structures encapsulated within a 1 nm diameter single-walled carbon nanotube. The most energetically preferable confined iodine structures are the I-3(-), I-5(-) and I-8(2)- molecular anions and periodic single, double and triple chain systems. The formation energy drops with increasing number of iodine atoms, reaching a minimum for a single iodine chain. Double and triple chains are metastable but have higher formation energies due to spatial confinement within the thin carbon nanotube. The calculated electron transfer from the nanotube to the molecular structures is close to the integer charge values of the molecular anions. The corresponding Fermi energy shift depends on the iodine concentration. For the single, double and triple chains the calculated Fermi shift is similar to 0.13, similar to 0.23 and similar to 0.19 eV below the top of the nanotube valence band, respectively. The computational approaches presented here require minimal a priori knowledge of the system under study, yet are able to predict stable iodine structures observed in experiment. (C) 2018 Elsevier Ltd. All rights reserved.
|