IMN

Biblio. IMN

Référence en vue solo

Nwakanma, O., Reyes, P. & Velumani, S. (2018) Electrical, structural, and topographical properties of direct current (DC) sputtered bilayer molybdenum thin films. Journal of Materials Science-Materials in Electronics, 29 15671–15681. 
Added by: Richard Baschera (2018-10-04 15:04:06)   Last edited by: Richard Baschera (2018-10-04 15:09:35)
Type de référence: Article
DOI: 10.1007/s10854-018-9165-2
Clé BibTeX: Nwakanma2018
Voir tous les détails bibliographiques
Catégories: HORSIMN, INTERNATIONAL
Créateurs: Nwakanma, Reyes, Velumani
Collection: Journal of Materials Science-Materials in Electronics
Consultations : 1/355
Indice de consultation : 3%
Indice de popularité : 0.75%
Résumé     
Renewable energy sources offer a viable green energy solution to the increasing global energy demands, and the photovoltaics offers a means of tapping into the abundance of the solar energy. Molybdenum (Mo) thin film has been used as a back-contact electrode in high-efficiency solar cells mainly due to its ohmic nature with the absorber material (especially with chalcopyrites and kesterites), low resistivity, adequate reflectance, and porosity to alkali materials. Mo thin films used in solar cells are deposited by direct current (DC) sputtering under argon ion atmosphere. The present work deals with the effects of the sputtering deposition conditions (i.e., working pressure and power) on the electrical properties of Mo thin films deposited on soda-lime glass using DC magnetron sputtering at different working pressures (5-20 mTorr) and deposition powers (100-800 W). Optimized deposition power and sputtering pressure were used to deposit a Mo bilayer thin film intended for solar cells application. X-ray diffractometric studies showed the (110) plane corresponding to the body-centered cubic structure of the Mo material. Calculated values were used to estimate other parameters of the deposited films (e.g., stress, dislocation density), as these properties affect the potential diffusion of sodium (Na) through the soda-lime glass into the absorber layer that is important as the moderate inclusion of Na improves the cell efficiency. The cross-section of the deposited film was analyzed using a field-emission scanning electron microscopy, to confirm the successful deposition of the bilayer. The surface of the films plays a vital role in the Mo interface with the absorber layer. Atomic force microscopy was used to acquire the topographical information from the sputtered bilayer film. The resistivity, as measured using a four-point probe, of the Mo films deposited at different conditions was in the order of 10(-6) a"broken vertical bar m while the resistivity of the bilayer was 0.60 x 10(-6) a"broken vertical bar m.
  
wikindx 4.2.2 ©2014 | Références totales : 2859 | Requêtes métadonnées : 47 | Exécution de script : 0.11312 secs | Style : Harvard | Bibliographie : Bibliographie WIKINDX globale