![]() |
![]() |
Panabiere, E., Badot, J.-C., Dubrunfaut, O., Etiemble, A. & Lestriez, B. (2017) Electronic and Ionic Dynamics Coupled at Solid-Liquid Electrolyte Interfaces in Porous Nanocomposites of Carbon Black, Poly(vinylidene fluoride), and gamma-Alumina. J. Phys. Chem. C, 121 8364–8377.
Added by: Richard Baschera (2017-06-20 14:50:38) Last edited by: Richard Baschera (2017-06-20 15:29:45) |
Type de référence: Article DOI: 10.1021/acs.jpcc.6b12204 Numéro d'identification (ISBN etc.): 1932-7447 Clé BibTeX: Panabiere2017 Voir tous les détails bibliographiques ![]() |
Catégories: ST2E Mots-clés: carbon-lifepo4 nanocomposites, composite electrode, Conductivity, fuel-cells, impedance spectroscopy, Lithium batteries, nanotubes, percolation, soggy-sand electrolytes, transport Créateurs: Badot, Dubrunfaut, Etiemble, Lestriez, Panabiere Collection: J. Phys. Chem. C |
Consultations : 3/433
Indice de consultation : 3% Indice de popularité : 0.75% |
Résumé |
Better fundamental understanding of the transport properties within nanocomposite materials consisting of interpenetrated percolating networks and used as electrodes is needed to improve their performance for a variety of devices. The. simultaneous measurement of their effective ionic and electronic conductivities requires a sophisticated experimental set up. Here, the reciprocal influence of ionic and electronic transfers at different scales of model porous nanocomposites made of carbon black-poly(vinylidene fluoride)-gamma alumina wetted by a nonaqueous electrolyte is investigated by broadband dielectric spectroscopy (BDS) from 40 to 10(10) Hz, between 223 and 293 K. Experimental results show that the coupling of electronic and ionic dynamics at interfaces in the nanostructured composite material results in significant decrease of the electronic conductivity compared to the dry state and increase of the ionic conductivity compared to the bulk electrolyte.
|