IMN

Biblio. IMN

Référence en vue solo

Pana, O., Turcu, R., Soran, M. L., Leostean, C., Gautron, E., Payen, C. & Chauvet, O. (2010) Synthesis and characterization of the core-shell Au covered LSMO manganite magnetic nanoparticles. Synth. Met. 160 1692–1698. 
Added by: Richard Baschera (2016-03-10 21:37:32)   Last edited by: Richard Baschera (2020-05-18 15:37:21)
Type de référence: Article
DOI: 10.1016/j.synthmet.2010.06.002
Numéro d'identification (ISBN etc.): 0379-6779
Clé BibTeX: Pana2010
Voir tous les détails bibliographiques
Catégories: IMN, MIOPS, PMN
Mots-clés: Au coated nanoparticles, Core-shell, dependence, field, fine-particle, gold nanoparticles, granular perovskites, nanoparticles, peak, size, Sr manganites, Superparamagnetic particles, transport-properties
Créateurs: Chauvet, Gautron, Leostean, Pana, Payen, Soran, Turcu
Collection: Synth. Met.
Consultations : 16/531
Indice de consultation : 3%
Indice de popularité : 0.75%
Résumé     
In this work we report the synthesis and characterization of the nanomagnetic perovskite Sr manganites covered with Au shells having different thickness. La(2/3)Sr(1/3)MnO(3) (LSMO) manganite nanoparticles were first prepared by a sol-gel procedure. The LSMO manganite nanoparticles were chemically covered with gold to produce the core-shell samples. TEM, HRTEM and atomic emission spectroscopy techniques were used to determine the morphology and structure of the LSMO@Au nanoparticles. The bare LSMO nanoparticles have a mean diameter of around 4.4 nm while LSMO@Au nanoparticles have mean diameters between 7.15 and 4.8 nm depending on the gold quantity involved in the capping process. XRD studies show that both core and shell systems have the expected crystalline structure. The formation of the core-shell structure is sustained by the shift of the plasmon resonance wavelength maximum observed in the UV-vis absorbtion spectra of the LSMO@Au samples depending on the gold concentration. The magnetization versus applied magnetic field of the bare LSMO nanoparticles and LSMO@Au samples shows no hysteresis loop indicating the superparamagnetic behavior of these systems. The analysis of the temperature dependences of FC and ZFC magnetizations shows that for all the samples the axial anisotropy energy barriers are increased due to the magnetic dipolar interactions between neighbor nanoparticles. (C) 2010 Elsevier B.V. All rights reserved.
  
wikindx 4.2.2 ©2014 | Références totales : 2608 | Requêtes métadonnées : 67 | Exécution de script : 0.11685 secs | Style : Harvard | Bibliographie : Bibliographie WIKINDX globale