![]() |
![]() |
Guillemin, T., Douard, C., Robert, K., Asbani, B., Lethien, C., Brousse, T. & Le Bideau, J. (2022) Solid-state 3D micro-supercapacitors based on ionogel electrolyte: Influence of adding lithium and sodium salts to the ionic liquid. Energy Storage Materials, 50 606–617.
Added by: Richard Baschera (2022-07-08 09:05:59) Last edited by: Richard Baschera (2022-07-08 09:07:13) |
Type de référence: Article DOI: 10.1016/j.ensm.2022.05.041 Numéro d'identification (ISBN etc.): 2405-8297 Clé BibTeX: Guillemin2022 Voir tous les détails bibliographiques ![]() |
Catégories: IMN, PMN, ST2E Mots-clés: Interdigitated-3D-scaffold, Ionogel, Li-Na, Microsupercapacitor, MnO Créateurs: Asbani, Brousse, Douard, Guillemin, Le Bideau, Lethien, Robert Collection: Energy Storage Materials |
Consultations : 8/298
Indice de consultation : 11% Indice de popularité : 2.75% |
Liens URLs https://www.scienc ... /S2405829722002926 |
Résumé |
The ever-increasing interest in miniaturized Internet of Things devices and embedded electronics has given rise to a host of inquiries surrounding the need for safe, high performance energy storage devices. Solid-state 3D micro-supercapacitors based on ionogels provide a promising response to many of these pressing questions. Herein, leakage-free solid-state-like 3D micro-supercapacitors incorporating lithium and sodium salts added to 1-Ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide-based ionogels were investigated. The resulting micro-supercapacitors containing these lithium and sodium ions displayed energy densities of 10.2 and 9.5 µWh.cm−2 at power densities of 1.1 and 1.0 mW.cm−2, respectively. In those devoid of these alkaline ions, however, the energy density reached a mere 3 µWh.cm−2 at the same power density, thereby validating the proposed strategy. The 3D interdigitated MnO2 // MnO2 micro-supercapacitors were cycled 50 000 times at 1.75 mA.cm−2 with good capacitance retention (∼ 85 %). While performing under high temperatures (100°C), there was no evidence of electrolyte degradation, capacitance fading or electrolyte leakage.
|