Biblio. IMN

Référence en vue solo

Seid, K. A., Badot, J. C., Dubrunfaut, O., Levasseur, S., Guyomard, D. & Lestriez, B. (2012) Influence of the carboxymethyl cellulose binder on the multiscale electronic transport in carbon-LiFePO4 nanocomposites. J. Mater. Chem. 22 24057–24066. 
Added by: Laurent Cournède (2016-03-10 21:28:37)
Type de référence: Article
DOI: 10.1039/c2jm34964g
Numéro d'identification (ISBN etc.): 0959-9428
Clé BibTeX: Seid2012
Voir tous les détails bibliographiques
Catégories: ST2E
Mots-clés: anodes, carbon structure, Cathodes, Electrochemical performance, lifepo4 composite electrodes, Lithium-ion batteries, low-cost, polymers, pyrolytic-graphite surface, si negative electrodes
Créateurs: Badot, Dubrunfaut, Guyomard, Lestriez, Levasseur, Seid
Collection: J. Mater. Chem.
Consultations : 2/387
Indice de consultation : 2%
Indice de popularité : 0.5%
The broadband dielectric spectroscopy (BDS) technique (40 to 10(10) Hz) is used here to measure the electronic transport across all observed size scales of nanocomposite materials for lithium batteries composed of an active material (e.g. carbon-coated LiFePO4) and a polymeric binder. Data acquisitions as functions of temperature were also carried out, in order to determine the activation energies of the conductivity and relaxation frequencies at the different scales of the materials' architectures. Different electrical relaxations are evidenced, resulting from the polarizations at the different scales of the architecture. When the frequency increases, four dielectric relaxations are detected in the following order and due to: (a) space-charge polarization (low-frequency range) owing to the interface between the sample and the conductive metallic layer deposited on it; (b) polarization of C-LiFePO4 clusters (micronic and/or submicronic scales) induced by the existence of resistive junctions between them; (c) electron hopping between sp(2) domains (nanometric scale) within the carbon coating around the LiFePO4 particles; and (d) electron transfer through inter-graphitic layers within sp(2) domains. The influence of the binder (sodium-carboxymethyl cellulose) on the coating conductivity has been evidenced. The establishment of (non-covalent) bonds between the adsorbed binder and the carbon coating results in the decrease of the hopping distance and at the same time in an increase of the potential barrier for hopping. These phenomena could be due to an electron trapping by the adsorbed polymeric species at the surface of the coating, resulting in a decrease of the coating conductivity.
Added by: Laurent Cournède  
wikindx 4.2.2 ©2014 | Références totales : 2626 | Requêtes métadonnées : 62 | Exécution de script : 0.11692 secs | Style : Harvard | Bibliographie : Bibliographie WIKINDX globale