IMN

Biblio. IMN

Référence en vue solo

Garaga, M. N., Hsieh, M.-F., Nour, Z., Deschamps, M., Massiot, D., Chmelka, B. F. & Cadars, S. (2015) Local environments of boron heteroatoms in non-crystalline layered borosilicates. Phys. Chem. Chem. Phys. 17 21664–21682. 
Added by: Laurent Cournède (2016-03-10 18:36:42)
Type de référence: Article
DOI: 10.1039/c5cp03448e
Numéro d'identification (ISBN etc.): 1463-9076
Clé BibTeX: Garaga2015
Voir tous les détails bibliographiques
Catégories: ST2E
Mots-clés: 3-dimensional lattice connectivities, al-27 mas, catalytic-properties, MAS NMR, nuclear-magnetic-resonance, powder neutron-diffraction, silicate-surfactant mesophases, solid-state NMR, symmetry principles, x-ray-diffraction
Créateurs: Cadars, Chmelka, Deschamps, Garaga, Hsieh, Massiot, Nour
Collection: Phys. Chem. Chem. Phys.
Consultations : 1/511
Indice de consultation : 3%
Indice de popularité : 0.75%
Résumé     
Boron heteroatom distributions are shown to be significantly different in two closely related layered borosilicates synthesized with subtly different alkylammonium surfactant species. The complicated order and disorder near framework boron sites in both borosilicates were characterized at the molecular level by using a combination of multi-dimensional solid-state nuclear magnetic resonance (NMR) spectroscopy techniques and first-principles calculations. Specifically, two-dimensional (2D) solid-state J-mediated (through-bond) B-11\{Si-29\} NMR analyses provide direct and local information on framework boron sites that are covalently bonded to silicon sites through bridging oxygen atoms. The resolution and identification of correlated signals from distinct B-11-O-Si-29 site pairs reveal distinct distributions of boron heteroatoms in layered borosilicate frameworks synthesized with the different C16H33N+Me3 and C16H33N+Me2Et structure-directing surfactant species. The analyses establish that boron atoms are distributed non-selectively among different types of silicon sites in the layered C16H33N+Me3-directed borosilicate framework, whereas boron atoms are preferentially incorporated into incompletely condensed Q(3)-type sites in the C16H33N+Me2Et-directed borosilicate material. Interestingly, framework boron species appear to induce framework condensation of their next-nearest-neighbor silicon sites in the C16H33N+Me3-directed borosilicate. By comparison, the incorporation of boron atoms is found to preserve the topology of the C16H33N+Me2Et-directed borosilicate frameworks. The differences in boron site distributions and local boron-induced structural transformations for the two surfactant-directed borosilicates appear to be due to different extents of cross-linking of the siliceous frameworks. The molecular-level insights are supported by density functional theory (DFT) calculations, which show the distinct influences of boron atoms on the C16H33N+Me3- and C16H33N+Me2Et-directed borosilicate frameworks, consistent with the experimental observations.
Added by: Laurent Cournède  
wikindx 4.2.2 ©2014 | Références totales : 2856 | Requêtes métadonnées : 60 | Exécution de script : 0.13482 secs | Style : Harvard | Bibliographie : Bibliographie WIKINDX globale