Biblio. IMN

Référence en vue solo

Bouts, N., El Mel, A.-A., Angleraud, B. & Tessier, P.-Y. (2015) Sponge-like carbon thin films: The dealloying concept applied to copper/carbon nanocomposite. Carbon, 83 250–261. 
Added by: Laurent Cournède (2016-03-10 18:36:42)
Type de référence: Article
DOI: 10.1016/j.carbon.2014.11.006
Numéro d'identification (ISBN etc.): 0008-6223
Clé BibTeX: Bouts2015
Voir tous les détails bibliographiques
Catégories: PCM
Mots-clés: amorphous-carbon, carbide-derived carbon, diamond-like carbon, fabrication, ionic liquid, mesoporous carbon, nanoporous gold, nitric-acid, oxygen reduction reaction, superhydrophobic surfaces
Créateurs: Angleraud, Bouts, El Mel, Tessier
Collection: Carbon
Consultations : 1/516
Indice de consultation : 3%
Indice de popularité : 0.75%
Nanoporous carbon thin films are prepared by means of a selective etching process in nitric acid applied to nanocomposite copper/carbon (nc-Cu/C) thin films grown by magnetron cosputtering process. Laying on the electrical percolation theory, we demonstrate that to achieve a full etching of the copper phase present within the nc-Cu/C films, the Cu nanoparticles must be percolated. We further show that by adjusting the initial copper content within the nc-Cu/C films (between 61 and 85 at.\%), the pore size can be tuned accurately between 2 and 11 am. Contrary to what one may expect, increasing the pore size from 2 to 11 am induces an increase in the electrical conductivity of the nanoporous films from 82 to 308 S cm(-1). This unexpected electrical behavior is attributed to the structural modification of the carbon skeleton forming the porous material during the etching process. We further show that the transparency of such nanoporous films can be also controlled by tuning the pore size. The fact that the films with the highest electrical conductivity show the lowest optical absorption coefficient makes such material a very promising candidate for transparent electrode applications. This low temperature (less than 100 degrees C) synthesis approach will pave the way for the direct integration of conductive nanoporous carbon materials in thin film-based flexible electronic devices. (C) 2014 Elsevier Ltd. All rights reserved.
Added by: Laurent Cournède  
wikindx 4.2.2 ©2014 | Références totales : 2608 | Requêtes métadonnées : 60 | Exécution de script : 0.11444 secs | Style : Harvard | Bibliographie : Bibliographie WIKINDX globale