Biblio. IMN

Référence en vue solo

Jolayemi, B., Buvat, G., Brousse, T., Roussel, P. & Lethien, C. (2022) Sputtered (Fe,Mn)(3)O-4 Spinel Oxide Thin Films for Micro-Supercapacitor. Journal of the Electrochemical Society, 169 110524. 
Added by: Richard Baschera (2022-12-01 13:58:48)   Last edited by: Richard Baschera (2022-12-01 14:01:12)
Type de référence: Article
DOI: 10.1149/1945-7111/aca050
Numéro d'identification (ISBN etc.): 0013-4651
Clé BibTeX: Jolayemi2022
Voir tous les détails bibliographiques
Catégories: ST2E
Créateurs: Brousse, Buvat, Jolayemi, Lethien, Roussel
Collection: Journal of the Electrochemical Society
Consultations : 1/303
Indice de consultation : 11%
Indice de popularité : 2.75%
The scaling up of wireless operating microelectronics for upcoming Internet of Things (IoT) applications demands high-performance micro-supercapacitors (MSCs) with corresponding high-energy and power capabilities. Indeed, this necessitates the quest for MSC's electrode materials capable of delivering high energy density at high charge/discharge rates. Many multicationic oxides, such as spinel manganese-iron compounds, demonstrate good pseudocapacitive properties as positive electrodes in conventional supercapacitors. However, fulfilling the required fabrication techniques is a challenge for their applications in MSCs. Hence, this study, for the first time, demonstrates the successful deposition of spinel Mn-Fe thin films on a functional platinumbased current collector. The deposition is achieved in a reactive oxygen environment via reactive DC magnetron sputtering techniques and subsequently annealed ex situ at 600 degrees C in a nitrogen environment. The electrochemical signature in neutral 1 M Na2SO4 aqueous electrolyte is comparable to those reported for spinel type Mn-Fe bulk counterparts. The areal capacitance at 10 mV.s(-1) is 15.5 for 1 mu m thick film, exhibiting excellent coulombic efficiency (close to 100%) and long-term cycle stability after 10,000 cycles. Thus, the synthesis of the multicationic pseudocapacitive oxides via compatible microelectronic deposition methods has set a prospective path to achieve very high-performance MSCs for future IoT applications. (C) 2022 The Electrochemical Society ({''}ECS{''}). Published on behalf of ECS by IOP Publishing Limited.
wikindx 4.2.2 ©2014 | Références totales : 2860 | Requêtes métadonnées : 48 | Exécution de script : 0.17736 secs | Style : Harvard | Bibliographie : Bibliographie WIKINDX globale