IMN

Biblio. IMN

Référence en vue solo

Jarnac, A., Jacques, V. L. R., Cario, L., Janod, E., Johnson, S. L., Ravy, S. & Laulhe, C. (2021) Photoinduced charge density wave phase in 1T-TaS2: growth and coarsening mechanisms. Comptes Rendus. Physique, 22 139–160. 
Added by: Richard Baschera (2022-01-14 08:05:03)   Last edited by: Richard Baschera (2022-01-14 08:11:20)
Type de référence: Article
DOI: 10.5802/crphys.89
Numéro d'identification (ISBN etc.): 1878-1535
Clé BibTeX: Jarnac2021
Voir tous les détails bibliographiques
Catégories: INTERNATIONAL, PMN
Créateurs: Cario, Jacques, Janod, Jarnac, Johnson, Laulhe, Ravy
Collection: Comptes Rendus. Physique
Consultations : 6/199
Indice de consultation : 10%
Indice de popularité : 2.5%
Liens URLs     https://comptes-re ... 10.5802/crphys.89/
Résumé     
Recent experiments have shown that the high-temperature incommensurate (I) charge density wave (CDW) phase of 1T-TaS2 can be photoinduced from the lower-temperature, nearly commensurate CDW state. In a first step, several independent regions exhibiting I-CDW phase modulations nucleate and grow. After coalescence, these regions form a multidomain I-CDW phase that undergoes coarsening dynamics, i.e. a progressive increase of the domain size or I-CDW correlation length. Using time-resolved X-ray diffraction, we show that the wave vector of the photoinduced I-CDW phase is shorter than in the I-CDW phase at equilibrium, and progressively increases towards its equilibrium value as the correlation length increases. We interpret this behaviour as a consequence of a self-doping of the photoinduced I-CDW, following the presence of trapped electrons in the vicinity of CDW dislocation sites. Putting together results of the present and past experiments, we develop a scenario in which the I-CDW dislocations are created during the coalescence of the I-CDW phase regions.
  
wikindx 4.2.2 ©2014 | Références totales : 2626 | Requêtes métadonnées : 54 | Exécution de script : 0.11363 secs | Style : Harvard | Bibliographie : Bibliographie WIKINDX globale