IMN

Biblio. IMN

Référence en vue solo

Managutti, P. B., Tymen, S., Liu, X., Hernandez, O., Prestipino, C., La Salle, A. L. G., Paul, S., Jalowiecki-Duhamel, L., Dorcet, V., Billard, A., Briois, P. & Bahout, M. (2021) Exsolution of Ni Nanoparticles from A-Site-Deficient Layered Double Perovskites for Dry Reforming of Methane and as an Anode Material for a Solid Oxide Fuel Cell. ACS Appl. Mater. Interfaces, 13 35719–35728. 
Added by: Richard Baschera (2021-09-27 08:31:53)   Last edited by: Richard Baschera (2022-08-18 08:37:56)
Type de référence: Article
DOI: 10.1021/acsami.1c08158
Numéro d'identification (ISBN etc.): 1944-8244
Clé BibTeX: Managutti2021
Voir tous les détails bibliographiques
Catégories: ST2E
Créateurs: Bahout, Billard, Briois, Dorcet, Hernandez, Jalowiecki-Duhamel, La Salle, Liu, Managutti, Paul, Prestipino, Tymen
Collection: ACS Appl. Mater. Interfaces
Consultations : 1/350
Indice de consultation : 7%
Indice de popularité : 1.75%
Liens URLs     https://doi.org/10.1021/acsami.1c08158
Résumé     
Exsolution is a promising technique to design metal nanoparticles for electrocatalysis and renewable energy. In this work, Ni-doped perovskites, (Pr0.5Ba0.5)1–x/2Mn1–x/2Nix/2O3−δ with x = 0, 0.05, 0.1, and 0.2 (S-PBMNx), were prepared to design exsolution systems as solid oxide fuel cell anodes and for catalysis applications. X-ray diffraction and transmission electron microscopy (TEM) analyses demonstrated that correlating A-site deficiency with Ni content can effectively induce exsolution of all Ni under H2 atmosphere at T ∼ 875 °C, yielding the reduced (exsolved) R-PBMNx materials. On heating the exsolution systems in air, metal incorporation in the oxide lattice did not occur; instead, the Ni nanoparticles oxidized to NiO on the layered perovskite surface. The lowest area-specific resistance (ASR) under wet 5% H2/N2 in symmetrical cells was observed for R-PBMN0.2 anode (ASR ∼ 0.64 Ω cm2 at 850 °C) due to the highest Ni particle density in the R-PBMNx series. The best performance for dry reforming of methane (DRM) was also obtained for R-PBMN0.2, with CH4 and CO2 conversion rates at 11 and 32%, respectively, and the highest production of H2 (37%). The DRM activity of R-PBMN0.2 starts at 800 °C and is sustained for up to at least 5 h operation with little carbon deposition (0.017 g·gcat–1·h–1). These results clearly demonstrate that varying Ni-doping in layered double perovskite oxides is an effective strategy to manipulate the electrochemical performance and catalytic activity for energy conversion purposes.
  
Notes     
Publisher: American Chemical Society
  
wikindx 4.2.2 ©2014 | Références totales : 2856 | Requêtes métadonnées : 55 | Exécution de script : 0.13501 secs | Style : Harvard | Bibliographie : Bibliographie WIKINDX globale