Biblio. IMN

Référence en vue solo

Cecconi, M., Cambi, C., Carrisi, S., Deneele, D., Vitale, E. & Russo, G. (2020) Sustainable Improvement of Zeolitic Pyroclastic Soils for the Preservation of Historical Sites. Applied Sciences, 10 899. 
Added by: Richard Baschera (2020-05-07 11:54:15)   Last edited by: Richard Baschera (2020-05-07 11:56:46)
Type de référence: Article
DOI: 10.3390/app10030899
Numéro d'identification (ISBN etc.): 20763417
Clé BibTeX: Cecconi2020
Voir tous les détails bibliographiques
Créateurs: Cambi, Carrisi, Cecconi, Deneele, Russo, Vitale
Collection: Applied Sciences
Consultations : 1/275
Indice de consultation : 4%
Indice de popularité : 1%
Liens URLs     https://www.scilit ... ee68ae166fc40803d6
Climate changes are inducing a modification of environmental loads on historical sites, requiring new actions towards their conservation. In the paper, the results of an experimental work on sustainable improvement of a pyroclastic soil belonging to the Orvieto cliff (Central Italy) have been investigated in the perspective of its preservation from degradation. The slightly coherent facies of Orvieto Ignimbrite (pozzolana) was treated with hydrated lime and the subsequent chemo-physical evolution was investigated by means of a multi-scale analysis. The beneficial effects obtained from the improvement in terms of mechanical behaviour were interpreted and correlated to the chemo-physical evolution of the system. Microstructural analyses, X-ray diffractometry, thermo-gravimetric analyses (DTG), SEM observations, mercury intrusion porosimetry performed on raw and treated samples, showed that the pozzolanic reactions develop since the very beginning in the system and that the observed mechanical improvement of the treated soil is mainly due to the formation of calcium silicate hydrates (CSH) and calcium aluminate hydrates (CAH). In the paper, the mechanical improvement is put in evidence by comparing the results of oedometer tests performed on both raw and treated samples.
wikindx 4.2.2 ©2014 | Références totales : 2612 | Requêtes métadonnées : 53 | Exécution de script : 0.11301 secs | Style : Harvard | Bibliographie : Bibliographie WIKINDX globale