IMN

Biblio. IMN

Référence en vue solo

Cuenot, S., Bouvree, A. & Bouchara, J.-P. (2017) Nanoscale Mapping of Multiple Lectins on Cell Surfaces by Single-Molecule Force Spectroscopy. Adv. Biosyst. 1 1700050. 
Added by: Richard Baschera (2019-12-05 13:51:48)   Last edited by: Richard Baschera (2019-12-05 13:55:04)
Type de référence: Article
DOI: 10.1002/adbi.201700050
Numéro d'identification (ISBN etc.): 2366-7478
Clé BibTeX: Cuenot2017a
Voir tous les détails bibliographiques
Catégories: PMN
Mots-clés: adherence, Aspergillus fumigatus, aspergillus-fumigatus, atomic force microscopy, binding, lectin-carbohydrate interactions, linking, localization, microscopy, molecular recognition, pathogen-host adhesion, proteins, recognition, system
Créateurs: Bouchara, Bouvree, Cuenot
Collection: Adv. Biosyst.
Consultations : 1/350
Indice de consultation : 4%
Indice de popularité : 1%
Résumé     
Molecular recognition events driven by protein-carbohydrate interactions play fundamental roles in various physiological and pathological processes in living organisms, including cohesion inside tissues, innate immune response, cancer cell metastasis, and infections. Unlike widely investigated carbohydrates, detailed knowledge of both the spatial organization of specific lectins and their identification on cell surfaces remains an essential prerequisite for the understanding of pathogen adhesion to host tissues and subsequent infection prevention. In this study, the spatially resolved localization, identification, and quantification of multiple carbohydrate-binding sites are directly revealed on the surface of fungal pathogen Aspergillus fumigatus. Nanoscale reconstructed mapping from several recognition maps, corresponding each to a unique specific interaction probed by single-molecule force spectroscopy, shows the distribution of carbohydrate-binding sites on the pathogen surface. The identified binding sites are then blocked with the appropriate carbohydrate, attesting the possibility to control lectin-mediated host-pathogen interactions. Germination markedly affects both the spatial distribution of carbohydrate-binding sites, mostly expressed at the apex of hyphae, and the identity of the predominant ones, which depend on the location on germ tubes. These insights clearly open exciting avenues in nanomedicine to control host-pathogen interactions with the development of vaccines or inhibitory drugs that preferentially target the identified carbohydrate-binding sites.
  
wikindx 4.2.2 ©2014 | Références totales : 2856 | Requêtes métadonnées : 59 | Exécution de script : 0.12659 secs | Style : Harvard | Bibliographie : Bibliographie WIKINDX globale