IMN

Biblio. IMN

Référence en vue solo

Haye, E., Achour, A., Guerra, A., Moulai, F., Hadjersi, T., Boukherroub, R., Panepinto, A., Brousse, T., Pireaux, J.-J. & Lucas, S. (2019) Achieving on chip micro-supercapacitors based on CrN deposited by bipolar magnetron sputtering at glancing angle. Electrochimica Acta, 324 UNSP 134890. 
Added by: Richard Baschera (2019-10-25 09:29:58)   Last edited by: Richard Baschera (2019-10-25 09:32:42)
Type de référence: Article
DOI: 10.1016/j.electacta.2019.134890
Clé BibTeX: Haye2019
Voir tous les détails bibliographiques
Catégories: INTERNATIONAL, ST2E
Créateurs: Achour, Boukherroub, Brousse, Guerra, Hadjersi, Haye, Lucas, Moulai, Panepinto, Pireaux
Collection: Electrochimica Acta
Consultations : 1/416
Indice de consultation : 5%
Indice de popularité : 1.25%
Résumé     
The enhancement of the surface area and ordering of mesopores is a key parameter to increase the specific capacitance of electrochemical capacitors (ECs). These parameters can improve the electrolyte accessibility to the active material in order to improve its charge storage. In this work, magnetron sputtering at glancing angle (GLAD) is used in order to enhance the porosity of CrN for use as electrode material in ECs. The GLAD technique consists on tilting the substrate according to the deposition flux allowing the formation of well-separated columns due to a ballistic shadowing effect. Four different tilts of 0 degrees, 45 degrees, 60 degrees and 75 degrees were explored. While the CrN films deposited at 0 degrees or 75 degrees do not show any capacitive behaviour, a high areal capacitance is obtained at 45 degrees or 60 degrees (35.4 mF cm(-2) at a current density of 1.2 mA cm(-2) in 0.5 M H2SO4 electrolyte) with a good cycling stability over 10,000 cycles. On chip interdigitated micro-supercapacitors (MSCs) were assembled with a maximum energy density of 2 mu Wh.cm(-2) (15.3 mWh.cm(-3)) at a power density of 20 mu W cm(-2) (0.15 W cm(-3)). The GLAD strategy can be generalised to other materials deposited by physical vapour deposition techniques, for highly porous electrodes, with improved electrochemical energy storage properties. (C) 2019 Elsevier Ltd. All rights reserved.
  
wikindx 4.2.2 ©2014 | Références totales : 2830 | Requêtes métadonnées : 54 | Exécution de script : 0.12445 secs | Style : Harvard | Bibliographie : Bibliographie WIKINDX globale