IMN

Biblio. IMN

Référence en vue solo

Lannelongue, P., Le Vot, S., Fontaine, O., Sougrati, M.-T., Crosnier, O., Brousse, T. & Favier, F. (2018) Investigation of Ba0.5Sr0.5CoxFe1-xO3-delta as a pseudocapacitive electrode material with high volumetric capacitance. Electrochimica Acta, 271 677–684. 
Added by: Richard Baschera (2018-07-17 08:58:09)   Last edited by: Richard Baschera (2018-07-24 13:04:59)
Type de référence: Article
DOI: 10.1016/j.electacta.2018.03.173
Numéro d'identification (ISBN etc.): 0013-4686
Clé BibTeX: Lannelongue2018
Voir tous les détails bibliographiques
Catégories: ST2E
Créateurs: Brousse, Crosnier, Favier, Fontaine, Lannelongue, Le Vot, Sougrati
Collection: Electrochimica Acta
Consultations : 1/450
Indice de consultation : 4%
Indice de popularité : 1%
Résumé     
Ba0.5Sr0.5CoxFe1-xO3-delta phases, with 0.75 {<} x {<} 0.90, so-called BSCFs, were investigated as pseudocapacitive electrode materials. These polycationic oxide phases were prepared by a modified glycine-nitrate process and show the same perovskite structural arrangement and similar morphological characteristics in the whole series. The electrochemical performance was evaluated in aqueous electrolytes at room temperature. BSCF powders showed promising pseudocapacitive behavior as electrode materials with high volumetric capacitances which depend on the Co/Fe ratio. A volumetric capacitance of 500 F cm(-3), i.e. five times higher than that of a standard activated carbon electrode, was measured in 5.0M LiNO3 for the electrode based on Ba0.5Sr0.5Co0.8Fe0.2O3-delta material composition (x = 0.80). The electrode also exhibited moderate self-discharge and 90% of capacitance retention over 2000 cycles. The charge storage mechanism seems to be dependent upon the nature of the ions in the electrolyte and on the Co/Fe ratio. (C) 2018 Elsevier Ltd. All rights reserved.
  
wikindx 4.2.2 ©2014 | Références totales : 2856 | Requêtes métadonnées : 50 | Exécution de script : 0.12568 secs | Style : Harvard | Bibliographie : Bibliographie WIKINDX globale