IMN

Biblio. IMN

Référence en vue solo

Achour, A., Chaker, M., Achour, H., Arman, A., Islam, M., Mardani, M., Boujtita, M., Le Brizoual, L., Djouadi, M. A. & Brousse, T. (2017) Role of nitrogen doping at the surface of titanium nitride thin films towards capacitive charge storage enhancement. Journal of Power Sources, 359 349–354. 
Added by: Richard Baschera (2017-07-10 13:32:18)   Last edited by: Richard Baschera (2017-07-10 13:33:13)
Type de référence: Article
DOI: 10.1016/j.jpowsour.2017.05.074
Numéro d'identification (ISBN etc.): 0378-7753
Clé BibTeX: Achour2017a
Voir tous les détails bibliographiques
Catégories: ID2M, INTERNATIONAL, ST2E
Créateurs: Achour, Achour, Arman, Boujtita, Brousse, Chaker, Djouadi, Islam, Le Brizoual, Mardani
Collection: Journal of Power Sources
Consultations : 1/765
Indice de consultation : 6%
Indice de popularité : 1.5%
Résumé     
We recently reported an impressive cycling stability (over 20,000 cycles) of titanium nitride (TiN) electrodes with high specific capacitance. It is anticipated that nitrogen (beta-N) doping in the oxidized surface of TiN film plays a crucial role in charge storage mechanism and stability of this material. In this work, we offer an evidence on the effect of beta-N doping on improvement in specific capacitance of vacuum annealed TiN thin films. The annealing of the TiN films leads to the diffusion of the excess beta-N from sub-surface to oxidized TiN film surface without further oxidation of the electrode surface. We demonstrate an increase in the TiN areal capacitance upon an increase in the amount of beta-N dopant. The areal capacitance of the annealed films was enhanced by 3-fold (8.2 mF cm(-2) in K2SO4 aqueous electrolyte) without sacrificing the cycling stability of the electrodes after more than 10,000 consecutive charge/discharge cycles. (C) 2017 Elsevier B.V. All rights reserved.
  
wikindx 4.2.2 ©2014 | Références totales : 2855 | Requêtes métadonnées : 55 | Exécution de script : 0.13209 secs | Style : Harvard | Bibliographie : Bibliographie WIKINDX globale