IMN

Biblio. IMN

Référence en vue solo

Creuze, J., Braems, I., Berthier, F., Mottet, C., Treglia, G. & Legrand, B. (2008) Model of surface segregation driving forces and their coupling. Phys. Rev. B, 78 075413. 
Added by: Richard Baschera (2016-10-21 13:38:38)
Type de référence: Article
DOI: 10.1103/PhysRevB.78.075413
Numéro d'identification (ISBN etc.): 1098-0121
Clé BibTeX: Creuze2008
Voir tous les détails bibliographiques
Catégories: HORSIMN
Mots-clés: cu-ag, fcc transition, intergranular segregation, noble-metals, reconstruction, size mismatch, strain, superficial segregation, systems, transition-metal alloys
Créateurs: Berthier, Braems, Creuze, Legrand, Mottet, Treglia
Collection: Phys. Rev. B
Consultations : 10/426
Indice de consultation : 2%
Indice de popularité : 0.5%
Résumé     
Separating the surface segregation enthalpy into three elementary contributions (cohesive, alloy, and size) has been proposed by many authors but rarely tested quantitatively. A three element separation rule has been derived from a tight-binding Hamiltonian 15 years ago. It has yielded very satisfying results for various environments (close-packed surfaces, vicinal surfaces, grain boundaries, and clusters) for the Cu-Ag system and for many other alloys. However recently this rule has stumbled over the Co-Pt system. We therefore develop an approach-the coupled three effects model (CTEM)-based on a systematic study of the properties of permutation enthalpies-both in the bulk and in the surface-as a function of the value of the mixed interaction involved in the N-body interatomic potentials derived from the second moment approximation of the tight-binding scheme. We show that both the disagreement previously observed for Co-Pt and the agreement mentioned above for Cu-Ag can be explained by the variation of the alloy effective pair interactions (EPIs) in the surface and by the existence of coupling coefficients between the three effects. We also show that the surface EPIs are proportional to the bulk EPIs when the difference of atomic radii of the components can be neglected, while they differ from an additive constant in the presence of a large size effect. We suggest general criteria to determine alloys where the present improvements are expected to be significant.
Added by: Richard Baschera  
wikindx 4.2.2 ©2014 | Références totales : 2608 | Requêtes métadonnées : 62 | Exécution de script : 0.11446 secs | Style : Harvard | Bibliographie : Bibliographie WIKINDX globale