IMN

Biblio. IMN

Référence en vue solo

Bondarchuk, O., Morel, A., Belanger, D., Goikolea, E., Brousse, T. & Mysyk, R. (2016) Thin films of pure vanadium nitride: Evidence for anomalous non-faradaic capacitance. J. Power Sources, 324 439–446. 
Added by: Richard Baschera (2016-09-01 12:37:03)   Last edited by: Richard Baschera (2016-09-28 07:34:00)
Type de référence: Article
DOI: 10.1016/j.jpowsour.2016.05.093
Numéro d'identification (ISBN etc.): 0378-7753
Clé BibTeX: Bondarchuk2016
Voir tous les détails bibliographiques
Catégories: INTERNATIONAL, ST2E
Mots-clés: Electrochemical capacitors, Electrodes, supercapacitors, thin films, vanadium nitride, X-ray photoelectron spectroscopy
Créateurs: Belanger, Bondarchuk, Brousse, Goikolea, Morel, Mysyk
Collection: J. Power Sources
Consultations : 11/529
Indice de consultation : 3%
Indice de popularité : 0.75%
Résumé     
An impressive gravimetric capacitance of 1300 F g(-1) (surface capacitance similar to 3.3 mF cm(-2)) reported by Choi et al., 2006 for nanosized vanadium nitride has stimulated considerable interest in vanadium nitride as a potential electrode material for energy storing systems - supercapacitors. The postulated mechanism of charge storage in vanadium nitride materials involves redox reactions in the thin surface layer of vanadium oxide while the core vanadium nitride serves exclusively as a conducting platform. In this study we have synthesized pure oxygen-free vanadium nitride films and have found that they are capable of delivering a surface capacitance of up to similar to 3 mF cm(-2) at a potential scan rate of 3 mV s(-1) and similar to 2 mF cm(-2) at a potential scan rate of 1 V s(-1) in aqueous electrolytes. Combining electrochemical testing with X-ray photoelectron spectroscopy characterization has revealed that redox reactions play no or little role in the electrochemical response of pure VN, in contrast to the common wisdom stemming from the electrochemical response of oxygen-containing films. An alternative charge storage mechanism - space charge accumulation in a subsurface layer of similar to 100 nm - was put forward to explain the experimentally observed capacitance of VN films in aqueous electrolytes. (C) 2016 Elsevier B.V. All rights reserved.
  
wikindx 4.2.2 ©2014 | Références totales : 2592 | Requêtes métadonnées : 58 | Exécution de script : 0.11437 secs | Style : Harvard | Bibliographie : Bibliographie WIKINDX globale