IMN

Biblio. IMN

Référence en vue solo

El Mel, A.-A., Tessier, P.-Y., Buffiere, M., Gautron, E., Ding, J., Du, K., Choi, C.-H., Konstantinidis, S., Snyders, R., Bittencourt, C. & Molina-Luna, L. (2016) Controlling the Formation of Nanocavities in Kirkendall Nanoobjects through Sequential Thermal Ex Situ Oxidation and In Situ Reduction Reactions. Small, 12 2885–2892. 
Added by: Richard Baschera (2016-07-22 13:08:31)   Last edited by: Richard Baschera (2016-07-22 13:30:35)
Type de référence: Article
DOI: 10.1002/smll.201600396
Numéro d'identification (ISBN etc.): 1613-6810
Clé BibTeX: ElMel2016a
Voir tous les détails bibliographiques
Catégories: INTERNATIONAL, PCM
Mots-clés: diffusion, hollow, nanocrystals, nanoscale, nanostructures, nanotubes, nanowires, oxide, transformations, zn nanoparticles
Créateurs: Bittencourt, Buffiere, Choi, Ding, Du, El Mel, Gautron, Konstantinidis, Molina-Luna, Snyders, Tessier
Collection: Small
Consultations : 10/716
Indice de consultation : 4%
Indice de popularité : 1%
Résumé     
Controlling the porosity, the shape, and the morphology of Kirkendall hollow nanostructures is the key factor to tune the properties of these tailor-made nanomaterials which allow in turn broadening their applications. It is shown that by applying a continuous oxidation to copper nanowires following a temperature ramp protocol, one can synthesize cuprous oxide nanotubes containing periodic copper nanoparticles. A further oxidation of such nanoobjects allows obtaining cupric oxide nanotubes with a bamboo-like structure. On the other hand, by applying a sequential oxidation and reduction reactions to copper nanowires, one can synthesize hollow nanoobjects with complex shapes and morphologies that cannot be obtained using the Kirkendall effect alone, such as necklace-like cuprous oxide nanotubes, periodic solid copper nanoparticles or hollow cuprous oxide nanospheres interconnected with single crystal cuprous oxide nanorods, and aligned and periodic hollow nanospheres embedded in a cuprous oxide nanotube. The strategy demonstrated in this study opens new avenues for the engineering of hollow nanostructures with potential applications in gas sensing, catalysis, and energy storage.
  
wikindx 4.2.2 ©2014 | Références totales : 2608 | Requêtes métadonnées : 67 | Exécution de script : 0.11634 secs | Style : Harvard | Bibliographie : Bibliographie WIKINDX globale