Biblio. IMN

Référence en vue solo

Jarry, A., Joubert, O., Suard, E., Zanotti, J. M. & Quarez, E. (2016) Location of deuterium sites at operating temperature from neutron diffraction of BaIn0.6Ti0.2Yb0.2O2.6-n(OH)(2n), an electrolyte for proton-solid oxide fuel cells. Phys. Chem. Chem. Phys. 18 15751–15759. 
Added by: Richard Baschera (2016-07-15 09:27:10)   Last edited by: Richard Baschera (2016-07-15 09:31:44)
Type de référence: Article
DOI: 10.1039/c6cp02146h
Numéro d'identification (ISBN etc.): 1463-9076
Clé BibTeX: Jarry2016
Voir tous les détails bibliographiques
Catégories: ST2E
Mots-clés: Conductivity, crystal-structure, diffusion, dopant concentration, in-situ, perovskites, powder diffraction, quantum molecular-dynamics, short-range structure, water incorporation
Créateurs: Jarry, Joubert, Quarez, Suard, Zanotti
Collection: Phys. Chem. Chem. Phys.
Consultations : 8/538
Indice de consultation : 2%
Indice de popularité : 0.5%
A fundamental understanding of the doping effect on the hydration mechanism and related proton diffusion pathways are keys to the progress of Proton-Solid Oxide Fuel Cell (H+-SOFC) technologies. Here, we elucidate the possible interplay between the crystal structure upon hydration and the conductivity properties in a promising perovskite type H+-SOFC electrolyte, BaIn0.6Yb0.2Ti0.2O2.6-n(OH)(2n). Thermal X-ray and neutron diffractions, neutron time-of-flight scattering along with thermal gravimetric analysis reveal the structural features of BaIn0.6Yb0.2Ti0.2O2.6-n(OH)(2n) at fuel cell operating temperatures. Between 400-600 degrees C, BaIn0.6Yb0.2Ti0.2O2.6-n(OH)(2n) (n {<} 0.042) remains in a disordered perovskite structure with high anisotropies in the form of oblate spheroids for oxygen. At 400 degrees C, the presence of oxygen and proton static disorder is clearly established. Yet, the insertion of mobile protons in 24k sites does not induce long-range structural distortion while facilitating both inter-and intra-octahedral proton transfers via quasi-linear O-D. . .O bonds, strong hydrogen bonding, and octahedral tilting. This experimental evidence reveals that the co-doping approach on Ba2In2O5 enhances greatly protonic conductivity levels by enabling a continuous proton diffusion pathway through BaIn0.6Yb0.2Ti0.2O2.6-n(OH)(2n). These new insights into the doping effect on the proton-transfer mechanism offer new perspectives for the development of H+-SOFC electrolyte materials.
wikindx 4.2.2 ©2014 | Références totales : 2525 | Requêtes métadonnées : 60 | Exécution de script : 0.11308 secs | Style : Harvard | Bibliographie : Bibliographie WIKINDX globale