Biblio. IMN

Référence en vue solo

Baibarac, M., Baltog, I., Mihut, L., Matea, A. & Lefrant, S. (2014) Nonlinear features of surface-enhanced Raman scattering revealed under non-resonant and resonant optical excitation. J. Opt. 16 035003. 
Added by: Florent Boucher (2016-04-29 09:26:44)
Type de référence: Article
DOI: 10.1088/2040-8978/16/3/035003
Numéro d'identification (ISBN etc.): 2040-8978
Clé BibTeX: Baibarac2014c
Voir tous les détails bibliographiques
Catégories: PMN
Mots-clés: anti-stokes/stokes ratios, graphite, microscopy, nonlinear optical processes, plasmons, silver, spectroscopy, stokes, surface-enhanced Raman light scattering (SERS), thin-films, walled carbon nanotubes
Créateurs: Baibarac, Baltog, Lefrant, Matea, Mihut
Collection: J. Opt.
Consultations : 1/580
Indice de consultation : 4%
Indice de popularité : 1%
By performing comparative Raman studies on nanometric thin films (9.5, 39, 88 and 185 nm) of copper phthalocyanine (CuPc) deposited on glass, Au and Ag supports, we demonstrate that the mechanism of the surface-enhanced Raman scattering (SERS) generated on Au and Ag substrates differs in the Stokes and anti-Stokes Raman branches depending on whether non-resonant (515.5 nm) or resonant (647.1 nm) optical excitation is applied. The evaluation of the SERS effect via the I-aS/I-S ratio reveals that this ratio is smaller or larger than that predicted by the Boltzmann law for non-resonant or resonant optical excitation, respectively. In the former case, the enhancement of the Stokes Raman emission is similar to a stimulated Raman process resulting from the plasmon coupling associated with the incident excitation light and spontaneous Stokes Raman emission. For the latter case, the amplification of the anti-Stokes Raman emission results from a wave-mixing process reminiscent of a single-beam CARS effect.
Added by: Florent Boucher  
wikindx 4.2.2 ©2014 | Références totales : 2860 | Requêtes métadonnées : 59 | Exécution de script : 0.14862 secs | Style : Harvard | Bibliographie : Bibliographie WIKINDX globale