IMN

Biblio. IMN

Référence en vue solo

Lavenus, S., Pilet, P., Guicheux, J., Weiss, P., Louarn, G. & Layrolle, P. (2011) Behaviour of mesenchymal stem cells, fibroblasts and osteoblasts on smooth surfaces. Acta Biomater. 7 1525–1534. 
Added by: Laurent Cournède (2016-03-10 21:32:21)
Type de référence: Article
DOI: 10.1016/j.actbio.2010.12.033
Numéro d'identification (ISBN etc.): 1742-7061
Clé BibTeX: Lavenus2011
Voir tous les détails bibliographiques
Catégories: PMN
Mots-clés: Adhesion, attachment, bone-marrow, differentiation, Fibroblasts, Hydroxyapatite, Mesenchymal stem cells, mineralization, Osteoblasts, osteogenic differentiation, proliferation, roughness, titanium, topography
Créateurs: Guicheux, Lavenus, Layrolle, Louarn, Pilet, Weiss
Collection: Acta Biomater.
Consultations : 1/564
Indice de consultation : 4%
Indice de popularité : 1%
Résumé     
Understanding of the interactions between cells and surfaces is essential in the field of tissue engineering and biomaterials. This study aimed to compare the adhesion, proliferation and differentiation of human mesenchymal stem cells (hMSCs), an osteoblast cell line (MC3T3-E1) and gingival fibroblasts (HGF-1) on tissue culture polystyrene (TCPS), glass and titanium (Ti). The average surface roughness was 5, 0.2 and 40 x 10(-3) mu m for TCPS, glass and Ti, respectively. Immunocytochemistry and image analysis made it possible to quantify the number and morphology of adherent cells as well as the density of the focal points. Regardless of the substrate, both hMSCs and osteoblastic cells were mainly branch-shaped. HGF-1 exhibited a significantly higher number of focal points on Ti than on TCPS and glass. Alizarin red quantification indicated that both hMSCs and osteoblastic cells were more differentiated on TCPS than on Ti and glass. The surface properties of substrates, such as roughness, wettability and chemical composition, modulated the behaviour of the cells. Early events, such as cell adhesion, may influence the differentiation of hMSC and consequently tissue healing around implanted biomaterials. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Added by: Laurent Cournède  
wikindx 4.2.2 ©2014 | Références totales : 2856 | Requêtes métadonnées : 63 | Exécution de script : 0.13415 secs | Style : Harvard | Bibliographie : Bibliographie WIKINDX globale