IMN

Biblio. IMN

Référence en vue solo

Kravchyk, K. V., Quarez, E., Solis, C., Serra, J. M. & Joubert, O. (2011) Cathode materials for La0.995Ca0.005NbO4 proton ceramic electrolyte. Int. J. Hydrog. Energy, 36 13059–13066. 
Added by: Laurent Cournède (2016-03-10 21:32:20)
Type de référence: Article
DOI: 10.1016/j.ijhydene.2011.07.069
Numéro d'identification (ISBN etc.): 0360-3199
Clé BibTeX: Kravchyk2011
Voir tous les détails bibliographiques
Catégories: ST2E
Mots-clés: AC impedance, Compatibility, composite cathodes, Conductivity, La0.995Ca0.005NbO4, oxide fuel-cells, proton conductivity, Solid Oxide Fuel Cells
Créateurs: Joubert, Kravchyk, Quarez, Serra, Solis
Collection: Int. J. Hydrog. Energy
Consultations : 2/474
Indice de consultation : 2%
Indice de popularité : 0.5%
Résumé     
The study presents the chemical and mechanical compatibility of the proton conducting electrolyte La0.995Ca0.005NbO4 (LCNO) with the LSM, LSCM and BSCF cathodes and the electrochemical performance of symmetrical cells based on LCNO. After annealing at high temperature the electrolyte-cathode mixtures in air and wet air, the obtained products were analyzed by X-ray powder diffraction (XRPD). The microstructure of the cathode and electrolyte materials and the interfaces were observed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX). The results show that LSCM cathode is chemically and mechanically stable with the LCNO electrolyte although the BSCF cathode reacts with it. Cation diffusion was observed between LSM cathode and LCNO electrolyte after the heat treatment of their mixture at T = 1150 degrees C. The electrochemical study performed on symmetrical cells revealed that the LSCM cathode presents the lowest value of area specific resistance (ASR) compared to the ones of the LSM and BSCF cathodes: ASR(LSCM) = 35 Omega cm(2); ASR(LSM) = 57 Omega cm(2); ASR(BSCF) = 416 Omega cm(2) (in humidified air at 750 degrees C). Finally, a CER-CER approach was used in order to minimize the polarisation resistance of the LSM cathode by mixing LSM and LCNO in different volumetric ratios. The lowest value of ASR for LSM-based composite cathode was obtained by adding 50 vol.\% of LCNO to LSM cathode (ASR(LSM/LCNO) = 22 Omega cm(2) in humidified air at 750 degrees C). Crown Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Added by: Laurent Cournède  
wikindx 4.2.2 ©2014 | Références totales : 2699 | Requêtes métadonnées : 59 | Exécution de script : 0.11592 secs | Style : Harvard | Bibliographie : Bibliographie WIKINDX globale