IMN

Biblio. IMN

Référence en vue solo

Pellegrin, Y., Sandroni, M., Blart, E., Planchat, A., Evain, M., Bera, N. C., Kayanuma, M., Sliwa, M., Rebarz, M., Poizat, O., Daniel, C. & Odobel, F. (2011) New Heteroleptic Bis-Phenanthroline Copper(I) Complexes with Dipyridophenazine or Imidazole Fused Phenanthroline Ligands: Spectral, Electrochemical, and Quantum Chemical Studies. Inorg. Chem. 50 11309–11322. 
Added by: Laurent Cournède (2016-03-10 21:32:19)
Type de référence: Article
DOI: 10.1021/ic2006343
Numéro d'identification (ISBN etc.): 0020-1669
Clé BibTeX: Pellegrin2011
Voir tous les détails bibliographiques
Catégories: MIOPS
Mots-clés: bis(phenanthroline) complexes, charge-transfer absorption, coordination-compounds, cu(nn)(2)(+) systems, density-functional theory, excitation-energies, excited-states, light-switch, photophysical properties, ruthenium(ii) complexes
Créateurs: Bera, Blart, Daniel, Evain, Kayanuma, Odobel, Pellegrin, Planchat, Poizat, Rebarz, Sandroni, Sliwa
Collection: Inorg. Chem.
Consultations : 9/429
Indice de consultation : 2%
Indice de popularité : 0.5%
Résumé     
Two new sterically challenged diimine ligands L-1 (2,9-dimesityl-2-(4'-bromophenyl)imidazo[4,5-f][1,10]phenanthroline) and L-2 (3,6-di-n-butyl-11-bromodipyrido[3,2-a:2',3'-c]phenazine) have been synthesized with the aim to build original heteroleptic copper(I) complexes, following the HETPHEN concept developed by Schmittel and co-workers. The structure of L-1 is based on a phen-imidazole molecular core, derivatized by two highly bulky mesityl groups in positions 2 and 9 of the phenanthroline cavity, preventing the formation of a homoleptic species, while L-2 is a dppz derivative, bearing n-butyl chains in alpha positions of the chelating nitrogen atoms. The unambiguous formation of six novel heteroleptic copper(I) complexes based on L-1, L-2, and complementary matching ligands (2,9-R-2-1,10-phenanthroline, with R = H, methyl, n-butyl or mesityl) has been evidenced, and the resulting compounds were fully characterized. The electronic absorption spectra of all complexes fits well with DFT calculations allowing the assignment of the main transitions. The characteristics of the emissive excited state were investigated in different solvents using time-resolved single photon counting and transient absorption spectroscopy. The complexes with ligand L-2, bearing a characteristic dppz moiety, exhibit a very low energy excited-state which mainly leads to fast nonradiative relaxation, whereas the emission lifetime is higher for those containing the bulky ligand L-1. For example, a luminescence quantum yield of about 3 x 10(-4) is obtained with a decay time of about 50 ns for C2 ([Cu-I(nBu-phen)(L-1)(+)) with a weak influence of strong coordinating solvent on the luminescence properties. Overall, the spectral features are those expected for a highly constrained coordination cage. Yet, the complexes are stable in solution, partly due to the beneficial pi stacking between mesityl groups and vicinal phenanthroline aromatic rings, as evidenced by the X-ray structure of complex C3 ([Cu-I(Mes-phen)(L-2)](+)). Electrochemistry of the copper(I) complexes revealed reversible anodic behavior, corresponding to a copper(I) to copper(II) transition. The half wave potentials increase with the steric bulk at the level of the copper(I) ion, reaching a value as high as 1 V vs SCE, with the assistance of ligand induced electronic effects. L-1 and L-2 are further end-capped by a bromo functionality. A Suzuki cross-coupling reaction was directly performed on the complexes, in spite of the handicapping lability of copper(I) phenanthroline complexes.
Added by: Laurent Cournède  
wikindx 4.2.2 ©2014 | Références totales : 2608 | Requêtes métadonnées : 68 | Exécution de script : 0.11752 secs | Style : Harvard | Bibliographie : Bibliographie WIKINDX globale