IMN

Biblio. IMN

Référence en vue solo

Zobelli, A., Ivanovskaya, V., Wagner, P., Suarez-Martinez, I., Yaya, A. & Ewels, C. P. (2012) A comparative study of density functional and density functional tight binding calculations of defects in graphene. Phys. Status Solidi B-Basic Solid State Phys. 249 276–282. 
Added by: Laurent Cournède (2016-03-10 21:28:40)
Type de référence: Article
DOI: 10.1002/pssb.201100630
Numéro d'identification (ISBN etc.): 0370-1972
Clé BibTeX: Zobelli2012
Voir tous les détails bibliographiques
Catégories: PMN
Mots-clés: adsorption, cluster, Defects, dftb, edges, electronic-properties, energy, graphene, graphite, growth, irradiation, migration, molecular-dynamics simulations, quantum, walled carbon nanotube
Créateurs: Ewels, Ivanovskaya, Suarez-Martinez, Wagner, Yaya, Zobelli
Collection: Phys. Status Solidi B-Basic Solid State Phys.
Consultations : 1/606
Indice de consultation : 4%
Indice de popularité : 1%
Résumé     
The density functional tight binding approach (DFTB) is well adapted for the study of point and line defects in graphene based systems. After briefly reviewing the use of DFTB in this area, we present a comparative study of defect structures, energies, and dynamics between DFTB results obtained using the dftb-code, and density functional results using the localized Gaussian orbital code, AIMPRO. DFTB accurately reproduces structures and energies for a range of point defect structures such as vacancies and Stone-Wales defects in graphene, as well as various unfunctionalized and hydroxylated graphene sheet edges. Migration barriers for the vacancy and Stone-Wales defect formation barriers are accurately reproduced using a nudged elastic band approach. Finally we explore the potential for dynamic defect simulations using DFTB, taking as an example electron irradiation damage in graphene.
Added by: Laurent Cournède  
wikindx 4.2.2 ©2014 | Références totales : 2830 | Requêtes métadonnées : 64 | Exécution de script : 0.12575 secs | Style : Harvard | Bibliographie : Bibliographie WIKINDX globale