IMN

Biblio. IMN

Référence en vue solo

Cuisinier, M., Martin, J. .-F., Moreau, P., Epicier, T., Kanno, R., Guyomard, D. & Dupre, N. (2012) Quantitative MAS NMR characterization of the LiMn1/2Ni1/2O2 electrode/electrolyte interphase. Solid State Nucl. Magn. Reson. 42 51–61. 
Added by: Laurent Cournède (2016-03-10 21:28:39)
Type de référence: Article
DOI: 10.1016/j.ssnmr.2011.09.001
Numéro d'identification (ISBN etc.): 0926-2040
Clé BibTeX: Cuisinier2012
Voir tous les détails bibliographiques
Catégories: ST2E
Mots-clés: carbonate solutions, cathode materials, electrochemical-behavior, Electrode/electrolyte interface, F-19 and P-31 MRS NMR, Li-7, Lithium batteries, Lithium-ion batteries, positive electrodes, ray photoelectron-spectroscopy, rechargeable batteries, surface analysis, surface-chemistry, thermal-stability, thin-films
Créateurs: Cuisinier, Dupre, Epicier, Guyomard, Kanno, Martin, Moreau
Collection: Solid State Nucl. Magn. Reson.
Consultations : 1/606
Indice de consultation : 4%
Indice de popularité : 1%
Résumé     
The conditions in which degradation processes at the positive electrode/electrolyte interface occur are still incompletely understood and traditional surface analytical techniques struggle to characterize and depict accurately interfacial films. In the present work, information on the growth and evolution of the interphases upon storage and cycling as well as their electrochemical consequences are gathered in the case of LiNi1/2Mn1/2O2 with commonly used LiPF6 (1 M in EC/DMC) electrolyte. The use of Li-7, F-19 and P-31 MAS NMR, made quantitative through the implementation of empirical calibration, is combined with transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) to probe the elements involved in surface species and to unravel the inhomogenous architecture of the interphase. At room temperature, contact with the electrolyte leads to a covering of the oxide surface first by LiF and lithiated organic species are found on the outer part of the interphase. At 55 degrees C, not only the interphase proceeds in further covering of the surface but also thickens resulting in an increase of 240\% of lithiated species and the presence of -POF2 fluorophosphates. The composition gradient within the interphase depth is also strongly affected by the temperature. In agreement with the electrochemical performance. quantitative NMR surface analyses show that the use of LiBOB-modified electrolyte results in a Li-enriched interphase, intrinsically less resistive than the standard LiPF6-based interphase, comprised of a mixture of resistive LiF with non lithiated species. (C) 2011 Elsevier Inc. All rights reserved.
Added by: Laurent Cournède  
wikindx 4.2.2 ©2014 | Références totales : 2855 | Requêtes métadonnées : 65 | Exécution de script : 0.15312 secs | Style : Harvard | Bibliographie : Bibliographie WIKINDX globale